You are browsing the archive for Team Sport.

Data is a Team Sport: Government Priorities and Incentives

Dirk Slater - August 13, 2017 in Ania Calderon, Data Blog, data literacy, Event report, Fabriders, Government, Open Data, research, Tamara Puhovski, Team Sport, The Open Data Charter

Data is a Team Sport is our open-research project exploring the data literacy eco-system and how it is evolving in the wake of post-fact, fake news and data-driven confusion.  We are producing a series of videos, blog posts and podcasts based on a series of online conversations we are having with data literacy practitioners. To subscribe to the podcast series, cut and paste the following link into your podcast manager : http://feeds.soundcloud.com/users/soundcloud:users:311573348/sounds.rss or find us in the iTunes Store and Stitcher. The conversation in this episode focuses on the challenges of getting governments to prioritise data literacy both externally and internally, and incentives to produce open-data and features:
  • Ania Calderon, Executive Director at the Open Data Charter, a collaboration between governments and organisations working to open up data based on a shared set of principles. For the past three years, she led the National Open Data Policy in Mexico, delivering a key presidential mandate. She established capacity building programs across more than 200 public institutions.
  • Tamara Puhovskia sociologist, innovator, public policy junky and an open government consultant. She describes herself as a time traveler journeying back to 19th and 20th century public policy centers and trying to bring them back to the future.

Notes from the conversation:

Access to government produced open-data is critical for healthy functioning democracies. It takes an eco-system that includes a critical thinking citizenry, knowledgeable civil servants, incentivised elected officials, and smart open-data advocates.  Everyone in the eco-system needs to be focused on long-term goals.
  • Elected officials needs incentivising beyond monetary arguments, as budgetary gains can take a long time to fruition.
  • Government’s capacities to produce open-data is an issue that needs greater attention.
  • We need to get past just making arguments for open-data, but be able to provide good solid stories and examples of its benefits.

Resources mentioned in the conversation:

Also, not mentioned, but be sure to check out Tamara’s work on Open Youth

View the full online conversation:

Flattr this!

Data is a Team Sport: Mentors Mediators and Mad Skills

Dirk Slater - August 7, 2017 in advocacy, community, Data Blog, data literacy, Data Maturity, DataKind UK, Emma Prest, Event report, Fabriders, Intermediaries, mentoring, Service Organisations, Team Sport, Tin Geber

Data is a Team Sport is our open-research project exploring the data literacy eco-system and how it is evolving in the wake of post-fact, fake news and data-driven confusion.  We are producing a series of videos, blog posts and podcasts based on a series of online conversations we are having with data literacy practitioners. To subscribe to the podcast series, cut and paste the following link into your podcast manager : http://feeds.soundcloud.com/users/soundcloud:users:311573348/sounds.rss or find us in the iTunes Store and Stitcher. This episode features:
  • Emma Prest oversees the running of DataKind UK, leading the community of volunteers and building understanding about what data science can do in the charitable sector. Emma sits on the Editorial Advisory Committee at the Bureau of Investigative Journalism. She was previously a programme coordinator at Tactical Tech, providing hands-on help for activists using data in campaigns. 
  • Tin Geber has been working on the intersection of technology, art and activism for most of the last decade. In his previous role as Design and Tech Lead for The Engine Room, he developed role-playing games for human rights activists; collaborated on augmented reality transmedia projects; and helped NGOs around the world to develop creative ways to combine technology and human rights.
In this episode we take a deep dive into how to get organisations beyond ‘data literacy’ and reach ‘data maturity’, where organisations understand what is good practice on running a data project.  Some main points:
  • A red flag that indicates a data project will end in failure is when the goal is implementation of a tool as opposed to a mission-critical goal.
  • Training in itself can be helpful with hard skills, such as how to do analysis, but in terms of running data projects, it takes a lot of hand-holding and mentorship is a more effective.
  • A critical role in and organisations is people who can champion tech and data work, and they need better support in that role.
  • Fake news and data-driven confusion has meant the need for understanding good data practice is even more important.

DataKind UK’s resources:

Tin’s resources:

Resources that are inspiring Emma’s Work:

Resources that are inspiring Tin’s work:

  • DataBasic.io – A a suite of easy-to-use web tools for beginners that introduce concepts of working with data
  • Media Manipulation and Disinformation Online – Report from Data and Society on how false or misleading information is having real and negative effects on the public consumption of news.
  • Raw Graphs – The missing link between spreadsheets and data visualization

View the full online conversation:

Flattr this!

Data is a Team Sport: Mentors Mediators and Mad Skills

Dirk Slater - August 7, 2017 in advocacy, community, Data Blog, data literacy, Data Maturity, DataKind UK, Emma Prest, Event report, Fabriders, Intermediaries, mentoring, Service Organisations, Team Sport, Tin Geber

Data is a Team Sport is our open-research project exploring the data literacy eco-system and how it is evolving in the wake of post-fact, fake news and data-driven confusion.  We are producing a series of videos, blog posts and podcasts based on a series of online conversations we are having with data literacy practitioners. To subscribe to the podcast series, cut and paste the following link into your podcast manager : http://feeds.soundcloud.com/users/soundcloud:users:311573348/sounds.rss or find us in the iTunes Store and Stitcher. This episode features:
  • Emma Prest oversees the running of DataKind UK, leading the community of volunteers and building understanding about what data science can do in the charitable sector. Emma sits on the Editorial Advisory Committee at the Bureau of Investigative Journalism. She was previously a programme coordinator at Tactical Tech, providing hands-on help for activists using data in campaigns. 
  • Tin Geber has been working on the intersection of technology, art and activism for most of the last decade. In his previous role as Design and Tech Lead for The Engine Room, he developed role-playing games for human rights activists; collaborated on augmented reality transmedia projects; and helped NGOs around the world to develop creative ways to combine technology and human rights.
In this episode we take a deep dive into how to get organisations beyond ‘data literacy’ and reach ‘data maturity’, where organisations understand what is good practice on running a data project.  Some main points:
  • A red flag that indicates a data project will end in failure is when the goal is implementation of a tool as opposed to a mission-critical goal.
  • Training in itself can be helpful with hard skills, such as how to do analysis, but in terms of running data projects, it takes a lot of hand-holding and mentorship is a more effective.
  • A critical role in and organisations is people who can champion tech and data work, and they need better support in that role.
  • Fake news and data-driven confusion has meant the need for understanding good data practice is even more important.

DataKind UK’s resources:

Tin’s resources:

Resources that are inspiring Emma’s Work:

Resources that are inspiring Tin’s work:

  • DataBasic.io – A a suite of easy-to-use web tools for beginners that introduce concepts of working with data
  • Media Manipulation and Disinformation Online – Report from Data and Society on how false or misleading information is having real and negative effects on the public consumption of news.
  • Raw Graphs – The missing link between spreadsheets and data visualization

View the full online conversation:

Flattr this!

Data is a Team Sport: One on One with Friedhelm Weinberg

Dirk Slater - July 28, 2017 in Capacity Building, Data Blog, documentation, Event report, Fabriders, human rights, research, software development, Team Sport

Data is a Team Sport is our open-research project exploring the data literacy eco-system and how it is evolving in the wake of post-fact, fake news and data-driven confusion.  We are producing a series of videos, blog posts and podcasts based on a series of online conversations we are having with data literacy practitioners. To subscribe to the podcast series, cut and paste the following link into your podcast manager : http://feeds.soundcloud.com/users/soundcloud:users:311573348/sounds.rss or find us in the iTunes Store and Stitcher. Friedhelm Weinberg is the Executive Director of Human Rights Information and Documentation Systems (HURIDOCS), an NGO that supports organisations and individuals to gather, analyse and harness information to promote and protect human rights.  In this conversation we take a look at what it takes to be both a tool developer and a capacity builder, and how the two disciplines can inform and build upon each other.  Some of the main points:
  • The capacity building work needs to come first and inform the tool development.
  • It’s critical that human rights defenders have a clear understanding of what they want to do with the data before they start collecting it.
  • It’s critical for human rights defenders to have their facts straight as this counts the most in international courts of law, and cuts through ‘fake news.’
  • Machine learning has enormous potential in documenting human rights abuses in being able to process large amount of case work.
  • They have been successful in bringing developers in-house by making efforts to get them to better understand how the capacity builders work and also vice-versa.

Specific projects within Huridocs he talked about:

  • Uwazi is an open-source solution for building and sharing document collections
  • The Collaboratory is their knowledge sharing network for practitioners focusing on information management and human rights documentation.

Readings/Resources that are inspiring his work:

View the full online conversation:

Flattr this!

Data is a Team Sport: One on One with Friedhelm Weinberg

Dirk Slater - July 28, 2017 in Capacity Building, Data Blog, documentation, Event report, Fabriders, human rights, research, software development, Team Sport

Data is a Team Sport is our open-research project exploring the data literacy eco-system and how it is evolving in the wake of post-fact, fake news and data-driven confusion.  We are producing a series of videos, blog posts and podcasts based on a series of online conversations we are having with data literacy practitioners. To subscribe to the podcast series, cut and paste the following link into your podcast manager : http://feeds.soundcloud.com/users/soundcloud:users:311573348/sounds.rss or find us in the iTunes Store and Stitcher. Friedhelm Weinberg is the Executive Director of Human Rights Information and Documentation Systems (HURIDOCS), an NGO that supports organisations and individuals to gather, analyse and harness information to promote and protect human rights.  In this conversation we take a look at what it takes to be both a tool developer and a capacity builder, and how the two disciplines can inform and build upon each other.  Some of the main points:
  • The capacity building work needs to come first and inform the tool development.
  • It’s critical that human rights defenders have a clear understanding of what they want to do with the data before they start collecting it.
  • It’s critical for human rights defenders to have their facts straight as this counts the most in international courts of law, and cuts through ‘fake news.’
  • Machine learning has enormous potential in documenting human rights abuses in being able to process large amount of case work.
  • They have been successful in bringing developers in-house by making efforts to get them to better understand how the capacity builders work and also vice-versa.

Specific projects within Huridocs he talked about:

  • Uwazi is an open-source solution for building and sharing document collections
  • The Collaboratory is their knowledge sharing network for practitioners focusing on information management and human rights documentation.

Readings/Resources that are inspiring his work:

View the full online conversation:

Flattr this!

Data is a Team Sport: One on One with Heather Leson

Dirk Slater - July 19, 2017 in community, Data Blog, data literacy, data protection, Event report, Heather Leson, Humanitarian Organisations, IFRC, research, Team Sport

Data is a Team Sport is our open-research project exploring the data literacy eco-system and how it is evolving in the wake of post-fact, fake news and data-driven confusion.  We are producing a series of videos, blog posts and podcasts based on a series of online conversations we are having with data literacy practitioners. To subscribe to the podcast series, cut and paste the following link into your podcast manager : http://feeds.soundcloud.com/users/soundcloud:users:311573348/sounds.rss or find us in the iTunes Store and Stitcher. This episode features a one on one conversation with Heather Leson, the Data Literacy Lead at International Federation of Red Cross and Red Crescent Societies. As a technologist, she strengthens community collaboration via humanitarian technologies and social entrepreneurship. She builds partnerships, curates digital spaces, fosters volunteer engagement and delivers training while inspiring systems for co-creation with maps, code and data. At the International Federation of Red Cross Red Crescent, her mandate includes global data advocacy, data literacy and data training programs in partnership with the 190 national societies and the 13 million volunteers. She is a past Board Member at the Humanitarian OpenStreetMap Team (4 years), Peace Geeks (1 year), and an Advisor for MapSwipe – using gamification systems to crowdsource disaster-based satellite imagery. Previously, she worked as Social Innovation Program Manager, Qatar Computing Research Institute (Qatar Foundation) Director of Community Engagement, Ushahidi, and Community Director, Open Knowledge (School of Data).

Main Points from the Conversation:

  • Data protection is the default setting for humanitarian organisations collecting data.
  • She’s found its critical to focus on people and what they are trying to accomplish, as opposed to focusing on tools.
  • She’s added ‘socialisation’ as the beginning step to the data pipeline.

Heather’s Resources

Blogs/websites Heather’s work The full online conversation:
Flattr this!

Data is a Team Sport: Advocacy Organisations

Dirk Slater - July 11, 2017 in Amnesty International, Data Blog, data literacy, Event report, Fabriders, global witness, research, Team Sport

Data is a Team Sport is our open-research project exploring the data literacy eco-system and how it is evolving in the wake of post-fact, fake news and data-driven confusion.  We are producing a series of videos, blog posts and podcasts based on a series of online conversations we are having with data literacy practitioners. To subscribe to the podcast series, cut and paste the following link into your podcast manager : http://feeds.soundcloud.com/users/soundcloud:users:311573348/sounds.rss or find us in the iTunes Store and Stitcher. In this episode we discussed data driven advocacy organisations with:
  • Milena Marin is Senior Innovation Campaigner at Amnesty International. She is currently leads Amnesty Decoders – an innovative project aiming to engage digital volunteers in documenting human right violations using new technologies. Previously she worked as programme manager of School of Data. She also worked for over 4 years with Transparency International where she supported TI’s global network to use technology in the fight against corruption.
  • Sam Leon, is Data Lead at Global Witness, focusing on the use of data to fight corruption and how to turn this information into change making stories. He is currently working with a coalition of data scientists, academics and investigative journalists to build analytical models and tools that enable anti-corruption campaigners to understand and identify corporate networks used for nefarious and corrupt practices.

Notes from the Conversation

In order to get their organisations to see the value and benefit of using data, they both have had to demonstrate results and have looked for opportunities where they could show effective impact. What data does for advocacy is to show the extent of the problem and it provides depths to qualitative and individual stories.  Milena credits the work of School of Data for the fact that journalists now expect their to be data accessible from Amnesty to back up their data.
  • They see gaps in the way that people working in advocacy see data and new technologies as bright shiny and easy answers to their challenges.
  • In today’s post-fact world, they find that it’s being used to more quickly discredit their work and as a result they need to work harder at presenting verifiable data.
  • Amnesty’s decoder project has involved 45,000 volunteers and along with being able to review a huge amount of video, they have also gotten training and a deeper understanding of what Amnesty does.
  • Global Witness has had a limited amount of data-sets they have released to the public and would like to be releasing more data that can be of use to communities. However there is a long way to go before their data can be open by default as there needs to be further learning and understanding of how data can make individuals more vulnerable.
  • Advocacy organisations need to use intermediaries and externals to cover the gaps in their own expertise around data.

More about their work

Milena

Sam

Dirk

Resources and Readings

View the Full Conversation:

  Flattr this!

Data is a Team Sport: One on One with Daniela Lepiz

Dirk Slater - July 3, 2017 in community, Data Blog, Data Journalism, data literacy, Event report, Fabriders, Nigeria, research, Team Sport, West Africa

Data is a Team Sport is our open-research project exploring the data literacy eco-system and how it is evolving in the wake of post-fact, fake news and data-driven confusion.  We are producing a series of videos, blog posts and podcasts based on a series of online conversations we are having with data literacy practitioners. To subscribe to the podcast series, cut and paste the following link into your podcast manager : http://feeds.soundcloud.com/users/soundcloud:users:311573348/sounds.rss or find us in the iTunes Store and Stitcher. This episode features a one on one episode with Daniela Lepiz, a Costa Rican data journalist and trainer, who is currently the Investigation Editor for CENOZO, a West African Investigative Journalism Project that aims to promote and support cross border data investigation and open data in the region. She has a masters degree in data journalism from the Rey Juan Carlos University in Madrid, Spain. Previously involved with OpenUP South Africa working with journalists to produce data driven stories.  Daniela is also a trainer for the Tanzania Media Foundation and has been involved in many other projects with South African Media, La Nacion in Costa Rica and other international organisations.

Notes from the conversation

Daniela spoke to us from Burkina Faso and reflected on the role of journalism and particularly data-driven journalism in functioning democracies.  The project she is working on empowering journalists working cross-border in western Africa to utilise data to expose corruption and violation of human rights.  To identify journalists to participate in the project, they have looked for individuals who are experienced, passionate and curious. The project engages existing media houses, such as Premium Times in Nigeria, to assure that there are places for their stories to appear. Important points Daniela raises:
  • Media is continually evolving and learning to evolve and Daniela can see that data literacy will be a required proficiency in the next five years.
  • The biggest barrier to achieving open-data in government are government officials who resist transparency
  • There is a real fear from journalists of having to be proficient in maths when they are considering improve their skills to produce data-driven stories.  They often fail to realise that its about working with others that have skills on statistics and data analysis.
  • Trust in media has declined in such a big way and it means journalists have to work that much harder, particularly in labelling things as opinion or being biased.

Resources she finds inspiring

Her blogs posts

The full online conversation:

Daniela’s bookmarks!

These are the resources she uses the most often. .Rddj – Resources for doing data journalism with RComparing Columns in Google Refine | OUseful.Info, the blog…Journalist datastores: where can you find them? A list. | Simon RogersAidInfoPlus – Mastering Aid Information for Change

Data skills

Mapping tip: how to convert and filter KML into a list with Open Refine | Online Journalism Blog
Mapbox + Weather Data
Encryption, Journalism and Free Expression | The Mozilla Blog
Data cleaning with Regular Expressions (NICAR) – Google Docs
NICAR 2016 Links and Tips – Google Docs
Teaching Data Journalism: A Survey & Model Curricula | Global Investigative Journalism Network
Data bulletproofing tips for NICAR 2016 – Google Docs
Using the command line tabula extractor tool · tabulapdf/tabula-extractor Wiki · GitHub
Talend Downloads

Github

Git Concepts – SmartGit (Latest/Preview) – Confluence
GitHub For Beginners: Don’t Get Scared, Get Started – ReadWrite
Kartograph.org
LittleSis – Profiling the powers that be

Tableau customized polygons

How can I create a filled map with custom polygons in Tableau given point data? – Stack Overflow
Using Shape Files for Boundaries in Tableau | The Last Data Bender
How to make custom Tableau maps
How to map geographies in Tableau that are not built in to the product (e.g. UK postcodes, sales areas) – Dabbling with Data
Alteryx Analytics Gallery | Public Gallery
TableauShapeMaker – Adding custom shapes to Tableau maps | Vishful thinking…
Creating Tableau Polygons from ArcGIS Shapefiles | Tableau Software
Creating Polygon-Shaded Maps | Tableau Software
Tool to Convert ArcGIS Shapefiles into Tableau Polygons | Tableau and Behold!
Polygon Maps | Tableau Software
Modeling April 2016
5 Tips for Making Your Tableau Public Viz Go Viral | Tableau Public
Google News Lab
HTML and CSS
Open Semantic Search: Your own search engine for documents, images, tables, files, intranet & news
Spatial Data Download | DIVA-GIS
Linkurious – Linkurious – Understand the connections in your data
Apache Solr –
Apache Tika – Apache Tika
Neo4j Graph Database: Unlock the Value of Data Relationships
SQL: Table Transformation | Codecademy
dc.js – Dimensional Charting Javascript Library
The People and the Technology Behind the Panama Papers | Global Investigative Journalism Network
How to convert XLS file to CSV in Command Line [Linux]
Intro to SQL (IRE 2016) · GitHub
Malik Singleton – SELECT needle FROM haystack;
Investigative Reporters and Editors | Tipsheets and links
Investigative Reporters and Editors | Tipsheets and Links

SQL_PYTHON

More data

2016-NICAR-Adv-SQL/SQL_queries.md at master · taggartk/2016-NICAR-Adv-SQL · GitHub
advanced-sql-nicar15/stats-functions.sql at master · anthonydb/advanced-sql-nicar15 · GitHub
2016-NICAR-Adv-SQL/SQL_queries.md at master · taggartk/2016-NICAR-Adv-SQL · GitHub
Malik Singleton – SELECT needle FROM haystack;
Statistical functions in MySQL • Code is poetry
Data Analysis Using SQL and Excel – Gordon S. Linoff – Google Books
Using PROC SQL to Find Uncommon Observations Between 2 Data Sets in SAS | The Chemical Statistician
mysql – Query to compare two subsets of data from the same table? – Database Administrators Stack Exchange
sql – How to add “weights” to a MySQL table and select random values according to these? – Stack Overflow
sql – Fast mysql random weighted choice on big database – Stack Overflow
php – MySQL: Select Random Entry, but Weight Towards Certain Entries – Stack Overflow
MySQL Moving average
Calculating descriptive statistics in MySQL | codediesel
Problem-Solving using Graph Traversals: Searching, Scoring, Ranking, …
R, MySQL, LM and quantreg
26318_AllText_Print.pdf
ddi-documentation-english-572 (1).pdf
Categorical Data — pandas 0.18.1+143.g3b75e03.dirty documentation
python – Loading STATA file: Categorial values must be unique – Stack Overflow
Using the CSV module in Python
14.1. csv — CSV File Reading and Writing — Python 3.5.2rc1 documentation
csvsql — csvkit 0.9.1 documentation
weight samples with python – Google Search
python – Weighted choice short and simple – Stack Overflow
7.1. string — Common string operations — Python v2.6.9 documentation
Introduction to Data Analysis with Python | Lynda.com
A Complete Tutorial to Learn Data Science with Python from Scratch
GitHub – fonnesbeck/statistical-analysis-python-tutorial: Statistical Data Analysis in Python
Verifying the email – Email Checker
A little tour of aleph, a data search tool for reporters – pudo.org (Friedrich Lindenberg)
Welcome – Investigative Dashboard Search
Investigative Dashboard
Working with CSVs on the Command Line
FiveThirtyEight’s data journalism workflow with R | useR! 2016 international R User conference | Channel 9
Six issue when installing package · Issue #3165 · pypa/pip · GitHub
python – Installing pip on Mac OS X – Stack Overflow
Source – Journalism Code, Context & Community – A project by Knight-Mozilla OpenNews
Introducing Kaggle’s Open Data Platform
NASA just made all the scientific research it funds available for free – ScienceAlert
District council code list | Statistics South Africa
How-to: Index Scanned PDFs at Scale Using Fewer Than 50 Lines of Code – Cloudera Engineering Blog
GitHub – gavinr/geojson-csv-join: A script to take a GeoJSON file, and JOIN data onto that file from a CSV file.
7 command-line tools for data science
Python Basics: Lists, Dictionaries, & Booleans
Jupyter Notebook Viewer

PYTHON FOR JOURNALISTS

New folder

Reshaping and Pivot Tables — pandas 0.18.1 documentation
Reshaping in Pandas – Pivot, Pivot-Table, Stack and Unstack explained with Pictures – Nikolay Grozev
Pandas Pivot-Table Example – YouTube
pandas.pivot_table — pandas 0.18.1 documentation
Pandas Pivot Table Explained – Practical Business Python
Pivot Tables In Pandas – Python
Pandas .groupby(), Lambda Functions, & Pivot Tables
Counting Values & Basic Plotting in Python
Creating Pandas DataFrames & Selecting Data
Filtering Data in Python with Boolean Indexes
Deriving New Columns & Defining Python Functions
Python Histograms, Box Plots, & Distributions
Resources for Further Learning
Python Methods, Functions, & Libraries
Python Basics: Lists, Dictionaries, & Booleans
Real-world Python for data-crunching journalists | TrendCT
Cookbook — agate 1.4.0 documentation
3. Power tools — csvkit 0.9.1 documentation
Tutorial — csvkit 0.9.1 documentation
4. Going elsewhere with your data — csvkit 0.9.1 documentation
2. Examining the data — csvkit 0.9.1 documentation
A Complete Tutorial to Learn Data Science with Python from Scratch
For Journalism
ProPublica Summer Data Institute
Percentage of vote change | CARTO
Data Science | Coursera
Data journalism training materials
Pythex: a Python regular expression editor
A secure whistleblowing platform for African media | afriLEAKS
PDFUnlock! – Unlock secured PDF files online for free.
The digital journalist’s toolbox: mapping | IJNet
Bulletproof Data Journalism – Course – LEARNO
Transpose columns across rows (grefine 2.5) ~ RefinePro Knowledge Base for OpenRefine
Installing NLTK — NLTK 3.0 documentation
1. Language Processing and Python
Visualize any Text as a Network – Textexture
10 tools that can help data journalists do better work, be more efficient – Poynter
Workshop Attendance
Clustering In Depth · OpenRefine/OpenRefine Wiki · GitHub
Regression analysis using Python
DataBasic.io
DataBasic.io
R for Every Survey Analysis – YouTube
Git – Book
NICAR17 Slides, Links & Tutorials #NICAR17 // Ricochet by Chrys Wu
Register for Anonymous VPN Services | PIA Services
The Bureau of Investigative Journalism
dtSearch – Text Retrieval / Full Text Search Engine
Investigation, Cybersecurity, Information Governance and eDiscovery Software | Nuix
How we built the Offshore Leaks Database | International Consortium of Investigative Journalists
Liz Telecom/Azimmo – Google Search
First Python Notebook — First Python Notebook 1.0 documentation
GitHub – JasonKessler/scattertext: Beautiful visualizations of how language differs among document types
  Flattr this!

Data is a Team Sport: Government Incentives for Data Literacy

Dirk Slater - May 16, 2017 in announcement, online conversations, research, Team Sport